CYCLOADDITIONS OF ORGANIC AZIDES TO CYCLOPENTADIENONES¹a

Alfred Hassner, David J. Anderson and Robert H. Reuss Department of Chemistry State University of New York at Binghamton^{1b} Binghamton, New York 13901

(Received in USA 5 May 1977; received in UK for publication 8 June 1977)

Organic azides, in particular, vinyl azides, have elicited recent interest not only as precursors to nitrenes but also as potential partners in dipolar cycloadditions.² The multiplicity of pathways that can a priori be predicted for the thermal addition of vinyl azides <u>1</u> to cyclopentadienones <u>2</u> includes cycloaddition of <u>1</u> via the azide group, the vinyl nitrene moiety or the olefinic double bond with <u>2</u> acting as the 2π - or 4π -electron component. Some vinyl azides have been shown to react thermally with <u>2</u> via prior transformation to azirines which add in a Diels-Alder fashion to produce azepines 5.³

We now report the thermal cycloaddition of several types of organic azides with 2 which affords novel heterocycles such as azabicyclo[3.3.0]octanes, azabicyclo[3.2.1]octanones, azabicyclo[3.1.0]hexanones, as well as azidobicyclo [2.2.1]heptanones and pyridones, depending on the structure of the azide substrate.⁴

For instance, vinyl azide <u>la</u> reacts with <u>2b</u> in refluxing chloroform to produce <u>3</u> (52%) together with a minor amount (2%) of Diels-Alder adduct <u>4</u> (ir 1767 cm⁻¹). An 88% yield of <u>3a</u> was realized by allowing a benzene solution of la (1.5 eq) and 2b to stand at 25° for 4 days.

The structure of <u>3</u> follows from ir, H nmr, europium shift studies, ¹³C nmr and mass spectra. <u>3a</u> shows a C=O absorption at 1695 cm⁻¹.

Downfield shifts in ppm on Eu(fod), complexation

Complexation of the oxygen in ketone <u>3a</u> and in its borohydride reduction product <u>6</u> with $Eu(fod)_3$ causes a much larger downfield shift for the β -protons (especially those located syn to the oxygen) than for the γ -protons. This excludes the regioisomeric structure <u>7</u>. The cycloaddition of <u>1</u> to <u>2</u> is highly sensitive to steric and electronic factors leading to recovery of starting materials with β -substituted styryl azides. Electron withdrawing substituents X speed up the reaction, the relative rates of <u>1b:la:lc</u> being approximately 6:3:1.

This suggests stabilization of a negative charge in the transition state leading to <u>3</u> and is in direct contrast to the relative rate order which we observed for the reaction of vinyl azides with triazolinediones.⁵ In the latter case the vinyl azide attacked the unsaturated system via the β -carbon. Our data are in consonance with the pathway shown in reaction scheme 1.

Scheme |

By comparison, diazoethane adds to tetraphenylcyclopentadienone at the carbonyl group as well as at one of the double bonds to produce a dihydropyrazole.⁶

Phenyl azide (8) reacts slowly with 2 in refluxing toluene (no reaction at 60°) to produce the bridged ketones 9 in ca. 70% yield. Apparently, decomposition of 8 is not a fast step in the reaction but is dependent on the presence of 2 since phenyl azide 8 remains largely unchanged upon refluxing in toluene in the presence of the 2,3-dihydro derivative of 2b. Furthermore, phenyl nitrene

No.29

generated from nitrobenzene and tributylphosphine did not react with $\underline{2b}$. Ketone $\underline{9b}$ is stable at 200° but rearranges by a 1,3-shift to the indoline $\underline{10}$ upon photochemical irradiation at 350 nm.

Reaction of 3,5-dinitrophenylazide with <u>2b</u> to give the α -pyridone <u>11</u> (33%) and this is analogous to the behavior of sulfonyl azides with tetracyclone.⁷ Under these conditions picryl azide forms the furazan-N-oxide <u>12</u>. Nitrene addition to cyclopentadienone, <u>2</u> was achieved using ethyl azidoformate at 115° and via oxidation of N-amino phthalimide.⁸ In this manner the fused aziridines <u>13</u> and <u>14</u> were formed in 64% and 100% yield, respectively. Efforts are underway to determine the reaction mechanisms in these transformations and the various factors that influence the pathway chosen.

Acknowledgment

This investigation was supported by Grant NO. CA 19203 awarded by the National Cancer Institute, DHEW.

REFERENCES

- (a) Cycloadditions XXIII. For paper XXII see A. Hassner, R. M. Cory and N. Sartoris, <u>J. Amer. Chem. Soc.</u>, <u>98</u>, 7698 (1976); (b) Work carried out in part at the University of Colorado.
- (a) T. Sheradsky in "Chemistry of the Azide Group," S. Patai, Ed., Interscience Publishers 1971, pp. 373-384; (b) K. H. Houk, J. Sims, C. R. Watts, and L. Luskus, <u>ibid</u>, <u>95</u>, 7301 (1973) and references therein; (c) G. L'Abbe, <u>Angew Chem. Intern. Ed.</u>, <u>14</u>, 775 (1975).
- (a) A. Hassner and D. J. Anderson, <u>J. Org. Chem.</u>, <u>39</u>, 3070 (1974); <u>ibid</u>.
 39, 3076 (1974); (b) A. Hassner and D. J. Anderson, ibid., <u>38</u>, 2565 (1973).
- 4. All new compounds were characterized by ir, H-nmr, mass spectra and elemental analysis.
- 5. A. Hassner, D. Tang and J. Keogh, <u>J. Org. Chem.</u>, <u>41</u>, 2102 (1976).
- 6. (a) B. Eistert and A. Langbein, <u>Annalen</u>, <u>678</u>, 78 (1964); (b) B. Eistert,
 G. Fink and M. El-Chahani, <u>ibid.</u>, <u>703</u>, 104 (1967); (c) B. Eistert, R.
 Muller and A. J. Thommen, <u>Chem. Ber.</u>, <u>101</u>, 3138 (1968).
- 7. R. A. Abramovitch and G. N. Knaus, J. Chem. Soc. Chem. Comm. 238 (1974).
- D. J. Anderson, T. L. Gilchrist, D. C. Horwell and C. W. Rees, <u>J. Chem.</u> <u>Soc. C</u>, 576 (1970).